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ABSTRACT: The current global operational four-dimensional ensemble-variational (4DEnVar) data assimilation (DA)
system at NCEP adopts a background ensemble at a reduced resolution, which restricts the range of spatial scales that the
ensemble background error covariance can resolve. A prior study developed a multiresolution ensemble 4DEnVar method
and determined that this approach can provide a comparable forecast to an approach using solely high-resolution
members, while substantially reducing the computational cost. This study further develops the multiresolution ensem-
ble 4DEnVar approach to allow for a flexible number of low- and high-resolution ensemble members as well as vary-
ing localization length scales between the high- and low-resolution ensembles. Three 4DEnVar experiments with the
same computational costs are compared. The first experiment has an 80-member high-resolution background ensem-
ble with single-scale optimally tuned localization (SR-High). The second and third experiments utilize the multiresolu-
tion background ensembles. One has 130 low-resolution and 40 high-resolution members (MR170) while the other has
180 low-resolution members and 24 high-resolution members (MR204). Both multiresolution ensemble experiments
utilize differing localization radii with ensemble resolution. Despite having the same costs, both MR170 and MR204
improves global forecasts and decreases tropical cyclone track errors for up to 5 days’ lead time compared to SR-High. Im-
provements are most apparent in larger-scale features, such as jet streams and the environmental steering flow of tropical
cyclones. Additionally, MR170 outperforms MR204 in terms of global and tropical cyclone track forecasts, demonstrating
the value of both increasing sampling at large scales and retaining substantial information at small scales.
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1. Introduction

There has been steady improvement in global NWP from
the latter half of the twentieth century through the present
(e.g., Hamill et al. 2010; Magnusson and Källén 2013; Bauer
et al. 2015; Benjamin et al. 2019). These improvements have
stemmed from advancements in computing resources, model
dynamics, model physics, observing systems, and data assimi-
lation. Recent studies have highlighted the particular impor-
tance of improving the initial conditions (ICs) of numerical
models through the advancement of data assimilation (DA)
methods (Magnusson et al. 2019; Chen et al. 2019).

Operational numerical prediction centers utilize various ad-
vanced DA techniques. One popular category includes the
ensemble-based DA approaches, such as various forms of
EnKF (e.g., Evensen 1994; Houtekamer and Mitchell 2001;
Bishop et al. 2001; Anderson 2001; Whitaker and Hamill 2002;
Wang and Bishop 2003; Wang et al. 2004; Hunt et al. 2007)
and hybrid ensemble–variational (EnVar; e.g., Hamill and
Snyder 2000; Lorenc 2003; Buehner 2005; Wang et al. 2007,
2008a,b; Wang 2010; Wang et al. 2013; Wang and Lei 2014)
methods. The current global operational system at NCEP
uses a hybrid 4DEnVar technique with a single control mem-
ber at high resolution and 80 ensemble members at a reduced
resolution (JCSDA 2018). Limitations in computational resour-
ces require examining the optimal balance between model reso-
lution and ensemble size in the context of ensemble-based DA.

The use of a high-resolution ensemble resolves smaller-
scale background errors (e.g., Hamill and Whitaker 2005).
However, increasing the ensemble size reduces the sam-
pling error of the ensemble-estimated background error
covariances (BECs; e.g., Miyoshi et al. 2014; Huang and
Wang 2018).

Lei and Whitaker (2017) used a given computational cost
to examine either increasing ensemble size or ensemble reso-
lution in 4DEnVar. They found that increasing ensemble res-
olution was more advantageous than increasing ensemble size
due to the further reduction of errors at small scales. When
computational cost was not constrained, Houtekamer et al.
(2014) and Hamrud et al. (2015) found benefit in increasing
both ensemble size and ensemble resolution when using EnKF
methods. These studies used the approach of universally in-
creasing resolution of all background ensemble members or
directly increasing the size of the single-resolution back-
ground ensemble (SR-ENS).

Studies have also explored the optimal ensemble size and
resolution for ensemble-based DA using a multiresolution
background ensemble approach (MR-ENS, hereafter), where
some background ensemble members are at a low resolution
and others are at a high resolution. Rainwater and Hunt
(2013) examined the MR-ENS approach in the local ensemble
transform Kalman filter (LETKF) using an idealized Lorenz
model (Lorenz 1996). At a similar computational cost for the
forecast, they found that the MR-ENS LETKF outperformed
a SR-ENS LETKF. The study, however, was limited by pro-
viding comparisons with a constraint only on the forecast com-
putational time, neglecting the computational cost for theCorresponding author: XuguangWang, xuguang.wang@ou.edu

DOI: 10.1175/MWR-D-22-0186.1

Ó 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

J O N E S AND WANG 1145MAY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:06 PM UTC

mailto:xuguang.wang@ou.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


DA steps. Additionally, since the tests were conducted in a
Lorenz model framework, their experimental context was
highly simplified compared to the operational NWP.

Kay and Wang (2020) introduced a MR-ENS approach in
the Gridpoint Statistical Interpolation analysis system (GSI)
4DEnVar. They determined that the MR-ENS 4DEnVar with
40 high-resolution members and 40 low-resolution members im-
proved upon the analysis and forecast of a SR-ENS 4DEnVar
with 80 low-resolution members. Additionally, forecast er-
rors of the MR-ENS approach were comparable to a SR-ENS
4DEnVar with 80 high-resolution members while MR-ENS re-
duced the computational cost by 40%. However, this study
had several limitations. First, they utilized the same number of
low- and high-resolution members in the MR-ENS background
ensemble, which inhibited the exploration of the effect of di-
verse sampling at different scales of interest. Second, they used
the same covariance localization distance for the low- and high-
resolution ensemble in the MR-ENS configuration, which con-
strained the effectiveness of estimating error covariances at
multiple scales. Third, their comparison did not constrain the
computation cost, which limited the ability to directly compare
improvements.

This study aims to further develop and explore the
MR-ENS approach in 4DEnVar. First, this study will advance
the MR-ENS methodology of Kay and Wang (2020) to allow
the use of different ensemble sizes for differing resolution in the
background ensemble. For example, a larger ensemble size can
be assigned for the low-resolution ensemble members than the
high-resolution members and vice versa. Therefore, the new ca-
pability will allow for flexible sampling of the scales of interest.
Second, the MR-ENS approach is further developed to allow
the high- and low-resolution members to use different covari-
ance localization radii. For example, the high-resolution mem-
bers use a tighter localization than the low-resolution members.
This capability will allow the high-resolution members to focus
on estimating the small-scale error covariance and the low-
resolution members on the large-scale error covariance. Third,
the MR-ENS experiments are configured to ensure the same
computational cost, including both the DA and forecast compu-
tational times, as the 4DEnVar experiment with an ensem-
ble solely composed of high-resolution members (SR-High,
hereafter). In this experiment design, the total number of
ensemble members in MR-ENS that can resolve large-scale
background errors is increased compared with SR-High. Corre-
spondingly, the total number of ensemble members in MR-ENS
that can resolve small scales is decreased relative to SR-High.
Using this experiment setup, this paper addresses the fol-
lowing questions: how does the use of more low-resolution
background ensemble members and fewer high-resolution
background ensemble members impact the global analysis
and subsequent global forecast? In which regions and asso-
ciated with which meteorological features are the greatest
impacts occurring? How does the impact on the analysis and
forecast change for varying spatial scales? MR-ENS 4DEnVar
is one of the approaches toward achieving an effective multi-
scale DA system for the next-generation global NWP (e.g.,
Wang et al. 2021). This study focuses on evaluating and diag-
nosing deterministic analyses and forecasts.

The rest of this paper is organized as follows. Section 2
describes the formulation of the newly extended MR-ENS
hybrid 4DEnVar. Section 3 describes configurations of the
SR-High and MR-ENS experiments, including DA and model
parameters. Results comparing the MR-ENS 4DEnVar and
SR-High 4DEnVar are discussed in section 4. The main con-
clusions are summarized in section 5.

2. Formulation of the multiresolution ensemble
hybrid 4DEnVar

The SR-High experiment in this study utilizes the hybrid
4DEnVar formulation as described in Wang and Lei (2014).
The MR-ENS 4DEnVar method as described in Kay and
Wang (2020) extends the hybrid 4DEnVar formulation to in-
corporate BECs from a multiresolution ensemble. The varia-
bles representing the low- and high-resolution ensembles are
represented by L and H, respectively. The total number of
state variables at low and high resolution are denoted by NL

and NH, respectively. For this formulation, the analysis incre-
ments x′t , a column matrix of size NH, are created for the con-
trol member at times t5 1, … , L and are defined by

x′t 5 x′1 1 u∑
KL

k51
[(aL)k + (xL)k,t] 1 ∑

KH

k51
[(aH)k + (xH)k,t], (1)

where x′1 is the analysis increment associated with the static
error covariance. The linear transform matrix u of sizeNH 3 NL

interpolates low-resolution grids to high-resolution. (aL)k and
(aH)k are the kth augmented control vectors (Wang 2010) for
the low- and high-resolution ensembles with sizes NL and NH,
respectively. The symbol “+” represents the Schur product. Dif-
ferent from Kay and Wang (2020), the numbers of ensemble
members for the low-resolution (KL) and high-resolution (KH)
may have different values. (xL)k,t and (xH)k,t are the kth back-
ground ensemble perturbations with sizes NL and NH at time t
normalized by

����������
KL 2 1

√
and

����������
KH 2 1

√
.

The analysis increments are found by the minimization of
the following cost function J with respect to the augmented
control vectors aL and aH:

J x′1, aL, aH] 5 b1J1 1 bLJL 1 bHJH 1 Jo
[

5
1
2
b1(x′1)TB21

1 (x′1) 1
1
2
bL(aL)TA21

L (aL)

1
1
2
bH(aH)TA21

H (aH)

1
1
2
∑
L

t51
(Hx′t 2 yot )TR21(Hx′t 2 yot ): (2)

The static BEC B1, as traditionally used in GSI 3DVar (Wu
et al. 2002), is associated with the analysis increment x′1; aL

and aH are column matrices that represent the concatenation
of augmented control vectors for the low- and high-resolution
ensembles with sizes NLKL and NHKH, respectively; and AL

and AH, with sizes NLKL 3 NHKH and NLKL 3 NHKH, are
used to determine the covariance localization for the low- and
high-resolution ensembles, respectively. Matrices AL and AH
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consist of both horizontal and vertical components. A spectral
filter transform is employed for the horizontal localization (e.g.,
Wang and Lei 2014; Kleist and Ide 2015), where a Gaspari and
Cohn (1999) function with set e-folding distances vary with the
vertical level of the model (e.g., Kleist and Ide 2015; Lei and
Whitaker 2017). A recursive filter transform (Hayden and
Purser 1995) is applied for vertical covariance localization
and is given as a level-invariant length scale. Different from
Kay and Wang (2020), the covariance localization scales may
also vary between the low- and high-resolution ensembles.
The terms b1, bL, and bH are the weights given to the static,
low-resolution ensemble, and high-resolution ensemble BECs
and are constrained by 1/b1 1 1/bL 1 1/bH 5 1, following
Wang et al. (2007) and Kay and Wang (2020). These weights
are scalars which currently have no scale-dependence. Other
terms in Eq. (2) are as follows: H is the linearized observation
operator; yot is the innovation vector at time t; R is the observa-
tion error covariance matrix.

3. Experimental design

The GSI-based 4DEnVar DA system was cycled every 6 h
for a 5-week period}from 1800 UTC 25 August to 1200 UTC
29 September 2017. The background and 120-h forecasts were
generated by the GFS using the Finite Volume Cubed-Sphere
dynamical core (FV3GFS; Harris et al. 2021). In all statisti-
cal verification, the first week was removed to account for
spinup time. The system assimilates the NCEP operational

global conventional and satellite observations1 over a 6-h
DA window.

a. Single high-resolution (SR-High) experiment

A flowchart of the general steps in the first experiment, sim-
ilar to Wang et al. (2013, their Fig. 1b), is given in Fig. 1a. In
the SR-High experiment, the background control member
and the background ensemble were at the same resolution
(T766 or;25 km). It is noted that although SR-High is designed
as a baseline for this study, it is different from the operational
configuration. Additionally, the resolution of the SR-High and
MR-ENS experiments in this study is coarser compared to that
of the operational due to limited computing resources. To distin-
guish from the second experiment where some background en-
semble members were run at lower resolution compared to the
control background forecast, we name the first experiment
SR-High, standing for “single high-resolution experiment.”
In SR-High, as shown in Fig. 1a, the control analysis was
performed by 4DEnVar. Its increments associated with the
static and ensemble BECs were, by construction, both at the
same high resolution. As in the current operational 4DEn-
Var system, 80 ensemble members were ingested. The static
and ensemble BECs were given weights of 12.5% and

FIG . 1. Flow charts for a cycle of the (a) SR-High and (b) MR-ENS experiments.

1 https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.
doc/table_2.htm and https://www.emc.ncep.noaa.gov/mmb/data_
processing/prepbufr.doc/table_18.htm.
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87.5%, respectively (Lei and Whitaker 2017; Huang and Wang
2018; Kay and Wang 2020; Huang et al. 2021). As shown in the
blue line in Fig. 2, level-dependent horizontal covariance locali-
zation was utilized. The horizontal e-folding distance was set to
350 km from the surface to ;300 hPa (hl1), 1000 km between
approximately 56 and 14 hPa (hl2), and 1300 km from around
5 hPa to the model top (hl3) with a linear transition between
these levels. In the vertical direction, a constant localization
e-folding distance of 0.5 scale heights was applied. These local-
ization distances have been identified in this study through
performing sensitivity tests. The same values are utilized oper-
ationally with the FV3GFSv15 4DEnVar and in studies such
as Huang et al. (2021).

For the ensemble update component, 4D LETKF was
adopted (Bishop et al. 2001; Wang and Bishop 2003; Wang
et al. 2004; Hunt et al. 2007; Lei et al. 2018). Multiple localiza-
tion distances were tested for 4D LETKF in this study. The
level-dependent Gaspari and Cohn (1999) cutoff distance for
horizontal and vertical covariance localization, same as those
used in Lei and Whitaker (2017), were found optimal and
used in this study. The horizontal cutoff distances are equiva-
lent to e-folding distances of 263 km for hl1, 1000 km for hl2,

and 1300 km for hl3 were used. The constant vertical localiza-
tion cutoff distance, equivalent to 0.375 scale heights, was
adopted. Following Kay and Wang (2020), due to computa-
tional constraints, the high-resolution background ensemble
was interpolated to low resolution (T382 or;50 km) before the
LETKF update. Multiplicative inflation (Whitaker and Hamill
2012) was used to increase ensemble spread by relaxing the
spread of the low-resolution posterior ensemble to 85% of
the spread of the low-resolution background ensemble (e.g.,
Lei and Whitaker 2017; Kay and Wang 2020; Huang et al.
2021). The updated 4D LETKF ensemble analyses were re-
centered on an interpolated (T766 to T382) 4DEnVar con-
trol analysis.

The background forecasts for the single control member and
80-member ensemble were initialized by the 4DEnVar control
analysis and the recentered 4D LETKF ensemble analyses, re-
spectively. These forecasts were run at high resolution with
64 vertical model levels by the FV3GFS. To reduce imbalance
in the forecast, a four-dimensional incremental analysis update
(4DIAU; Bloom et al. 1996; Lorenc et al. 2015) was used in
both the control and ensemble forecasts. High resolution is
considered to be C384, or ;25 km. Low resolution is C192,
or ;50 km. The configuration of model-specific parameters
is detailed in Zhou et al. (2019).

b. Multiresolution ensemble (MR-ENS) experiments

The flowchart for the MR-ENS experiments is shown in
Fig. 1b. The MR-ENS 4DEnVar experiments utilized the
methodology from section 2, where the high-resolution con-
trol member was updated using a high-resolution static BEC,
and low-resolution (T382 or ;50 km) and high-resolution
(T766 or ;25 km) ensemble BECs. As discussed in section 2,
the expanded approach allows for varying ensemble sizes.
Two MR-ENS configurations that had computational costs
nearly equal to SR-High (Table 1), were examined. The first
configuration used 130 low-resolution members and 40 high-
resolution members for a total ensemble size of 170 members
and will thus be denoted as MR170. The second configuration
utilized a larger number of low-resolution members, at
180 members, but a smaller number of high-resolution mem-
bers, at 24 members, for a total of 204 members and, there-
fore, will be denoted as MR204. These two experiments were
designed to test the sensitivity of the analyses and forecasts to
the balance between the large-scale and small-scale sampling.
The MR-ENS configuration that led to the smallest forecast
errors was used in additional comparisons to the SR-High ex-
periment to determine what mechanisms were driving the dif-
ferences between the experiments.

For the 4DEnVar step, as in Kay and Wang (2020), the static
BEC was given a weight of 12.5% and the remaining weight
was split evenly between the low- and high-resolution ensemble
BECs at 43.75% each. Given equal weights are assigned to the
low- and high-resolution ensembles, compared to SR-High, ef-
fectively smaller weight is given to small-scale BECs. The verti-
cal localization was applied, as in the SR-High experiment, with
a constant localization e-folding distance of 0.5 scale heights. As
described in section 2, the expanded MR-ENS approach allows

FIG. 2. Level-dependent localization length scales in e-folding
distance (km) for 4DEnVar for the SR-High experiment and high-
resolution ensemble for the MR-ENS experiments (blue) and for
the low-resolution ensemble for the MR-ENS experiments (red).
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for varying horizontal localization distances between the low- and
high-resolution ensembles. Prior studies have indicated optimal
localization distances increase with increasing ensemble size,
leading to greater dynamical balance and allowing for realistic
larger-scale correlations to be maintained (e.g., Houtekamer
and Mitchell 2001; Hamill et al. 2001; Ying et al. 2018; Wang
et al. 2021). For the high-resolution ensemble in these experi-
ments, the level-dependent localization distances (hl1, hl2,
and hl3) were equal to those described above in the SR-High
experiment (blue line in Fig. 2). For the low-resolution ensem-
ble, which has a much larger ensemble size, hl1 was set to an
e-folding distance of 700 km (red line in Fig. 2) as in Kleist
and Ide (2015). Their parameters were determined through
sensitivity tests.

Similar to the SR-High experiment and Kay and Wang
(2020), given the computational constraint, the 4D LETKF
updates to the ensemble were made at low-resolution by in-
terpolating the high-resolution ensemble members from T766
to T382. Though some small-scale information is lost in the in-
terpolation for the 4D LETKF step for both SR-High and
MR-ENS, their ensemble resolution differences weremaintained

in both the background ensemble forecast step and in the
4DEnVar steps. Testing indicates that, by the 3-h forecast,
running the forecast model at high resolution recovers greater
than 97% of the loss of such small-scale information. By the
9-h forecast, the recovery is greater than 99%. Based on the sensi-
tivity tests and past studies (e.g., Lei and Whitaker 2017),
4D LETKF localization and inflation parameters used for
MR-ENS adopted were the same as SR-High, described in
section 3a. The FV3GFS background forecasts were completed
at high-resolution for the control member and high-resolution
ensemble and at low-resolution for the low-resolution ensemble.
4DIAU is applied similarly to SR-High, except the analysis incre-
ments associated with the low-resolution ensemble are mapped
onto a low-resolutionmodel grid.

4. Results

a. Multiscale analysis

To determine the multiscale impact of the extended
MR-ENS and single-resolution ensemble 4DEnVar on
the analysis, analysis increments were calculated, decomposed

TABLE 1. The computational cost for the SR-High, MR170, and MR204 experiments for each DA and forecast step. Ratios are
calculated in reference to the SR-High experiment. Costs of all experiments were estimated using the vjet partition on NOAA’s
Research and Development High-Performance Computing System Jet machine. I/O cost is not included in the estimation. Since I/O
costs can vary greatly based on frequency of output, number of variables outputted, and if any parallel I/O techniques (Balle and
Johnsen 2016) are used, for this comparison, I/O costs were not included. Core hours are highlighted in boldface.

Experiment

SR-High MR170 MR204

4DEnVar
No. of cores 1260 1260 1260
Time (h) 0.92 0.91 0.91
Core hours 1159.20 1146.60 1146.60

LETKF
No. of cores 1260 1260 1260
Time (h) 0.21 0.67 0.90
Core hours 264.60 844.20 1134.00

Control member forecast
No. of cores 396 396 396
Time (h) 0.079 0.079 0.079
Core hours 31.28 31.28 31.28

High-resolution ensemble forecast
No. of cores 396 396 396
Time (h) 0.079 0.079 0.079
Ensemble size 80 40 24
Core hours 2502.72 1251.36 750.82

Low-resolution ensemble forecast
No. of cores 108 108
Time (h) 0.047 0.047
Ensemble size 130 180
Core hours 0.00 659.88 913.68

Total core hours 3957.80 3933.32 3976.38
Ratio 1.000 0.994 1.005
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into spectral space using spherical harmonics, and averaged
over all cycles. The 500-hPa analysis increment power spectra
for temperature, zonal wind, and specific humidity are shown in
Fig. 3. For temperature and zonal wind, MR170 has larger in-
crements for larger atmospheric scales (wavenumbers , ;150

or wavelengths . ;200 km) when compared with SR-High.
Such an increase of increments at large scales is reduced for
specific humidity. For smaller scales (wavenumbers . ;150 or
wavelengths , ;200 km), the MR170 experiment has similar
or slightly smaller analysis increments.

FIG. 3. Averaged analysis increment power at 500 hPa over all DA cycles as a function of wavenumber and wavelength for (a) tempera-
ture (K2), (b) zonal wind speed (m2 s22), and (c) specific humidity (kg2 kg22) for the SR-High (blue), MR170 (red), and MR204 (purple)
experiments.

FIG. 4. Difference in horizontal kinetic energy wavelet analysis between MR170 and SR-High averaged over all
DA cycles and over the (a) global, (b) Northern Hemisphere extratropical, (c) Southern Hemisphere extratropical,
and (d) tropical latitudes. The x axis represents the longitude. The left and right y axes represent the wavenumber
and corresponding wavelength, respectively. Red and blue shading represent scales and longitudes where MR170 and
SR-High, respectively, have larger horizontal kinetic energy analysis increments. The cutoffs between small, medium,
and large scales are denoted by dashed black lines.
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These results are consistent with the MR-ENS and SR-
High methodologies. MR170 has more ensemble members
to resolve the large-scale error covariances than SR-High.
Additionally, MR170 applies a broader localization scale
to its low-resolution ensemble BECs, while SR-High ap-
plies a shorter localization for its entire single-resolution
ensemble BECs. Such differences allow MR-ENS to make
larger adjustments at large scales. For variables which have
generically smaller scales, such an impact on the large-scale
increment is limited. For smaller scales, SR-High has more
high-resolution members to resolve the small-scale error covari-
ance than MR170. The high-resolution ensemble covariance is

also assigned a higher weight than MR170. Such differences
lead to slightly larger analysis increments at smaller scales by
SR-High. As discussed in section 5, combining SR-High and
MR-ENS with multiscale DA techniques, such as scale-
dependent localization (SDL; Buehner and Shlyaeva 2015;
Huang et al. 2021), may likely vary the analysis increment
power differences between the two experiments. Such topics
will be left for future studies.

A spatial wavelet diagnostic on the analysis increments is also
performed (Torrence and Compo 1998). A wavelet analysis
can diagnose both the location and spatial scale of decomposed
analysis increments. The horizontal kinetic energy analysis

FIG. 5. Difference in the wavelet horizontal kinetic energy analysis increment power (m2 s22)
between MR170 and SR-High averaged over all cycles and over (a) medium scales (wavelet
scales 16–30) and (b) small scales (wavelet scales 1–15). Red and blue shading represent latitudes
and longitudes where MR170 and SR-High, respectively, have larger horizontal kinetic energy
analysis increments. The tracks of (a) the tropical easterly waves that occurred at 850 hPa (Hollis
2021) or (b) the Atlantic hurricanes that occurred during September 2017 are plotted in cyan.
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increments for each analysis time were broken up into Mor-
let wavelets (Domingues et al. 2005) for each latitude and verti-
cal level. The wavelets were averaged over all vertical levels, all
cycles, and latitudes in four regions: globally (GB; all latitudes),
the Northern Hemisphere extratropics (NH; northward of 208N),
the Southern Hemisphere extratropics (SH; southward of 208S),
and the tropics (TR; between 208N and 208S). The difference in
these averages for the MR170 and SR-High experiments are
shown in Fig. 4. The scales chosen for the analysis were from 2 to
2(n/4) grid points, where n is the total number of scales, or 39
in this case. In Fig. 4, the y axes have been converted to wave-
number and wavelength}analogous to the x axes in the
above Fourier spectral analyses}for aid in interpreting what
scales are affected.

For the largest scales, there is a general increase in kinetic
energy analysis increments for the MR170 experiment aver-
aged over all latitudes (Fig. 4a). This increase is mainly domi-
nated by the SH region (Fig. 4c), indicating that at the largest
scales, MR170 has a greater impact on the analysis increments
in the SH region. At the smallest scales, averaged over all lati-
tudes, SR-High has substantially greater analysis increment
power between 158 and 908W, dominated by TR and NH lati-
tudes (Figs. 4b,d). At medium scales, MR170 and SR-High
produce mixed results with regards to their effect on the kinetic
energy analysis increments. For most longitudes, MR170 still
has greater analysis increment power. Between about 1208W
and 08, the global analysis increment power for SR-High is sub-
stantially increased. As shown in Figs. 4b and 4d, this increase is
dominated by NH and TR in longitudes associated with the At-
lantic Ocean, the Caribbean Sea, the Gulf of Mexico, and the
U.S. East Coast. Examining the vertical profile, at upper levels,
MR170 generally has greater horizontal kinetic energy analysis
increment power, especially at medium to large scales, and
shifts to lower power at nearly all scales at lower levels (not
shown).

To determine what physical processes are associated with the
greater medium-scale increment of SR-High between 1208W
and 08, instead of averaging the wavelets over latitude, as in

Fig. 4, the wavelets were averaged over small- (wavelet scales
of 1–15 or wavelengths , ;350 km) and medium-scales (wave-
let scales of 16–30 or wavelengths between approximately 350
and 5000 km). The 350-km cutoff between small and medium
scales was chosen, consistent with the localization radius for the
high-resolution ensembles. These wavelengths capture the most
intense impacts from tropical cyclones (TCs) and tropical east-
erly waves (e.g., Carlson 1969; Burpee 1972; Engel et al. 2017).
The cutoff between medium and large scales was chosen to in-
clude all impacts from these systems. For example, the maxi-
mum wavelength of a tropical easterly wave is ;5000 km (e.g.,
Reed et al. 1977). As shown in Fig. 5a, the greater analysis in-
crement power of the SR-High analysis at medium scales is pri-
marily collocated with the high density of tropical easterly
waves in the Atlantic. Additionally, the greater analysis in-
crement power of the SR-High analysis at small scales is lo-
cated at the northern tropical Atlantic and near the U.S.
East Coast (Fig. 5b). Four major hurricanes (Irma, Jose,
Lee, and Maria) fall within that area during the experiment
period. Bands of red within the TC basin are dominated by
storms undergoing rapid changes in intensity, indicating the
role of multiple scales and their interactions for TC rapid in-
tensity changes.

In summary, SR-High tends to make larger increments in
relatively small scales due to the greater number of high-
resolution ensemble members and their larger weight. In
more synoptically forced regions, however, as is the case in
the austral late winter and early spring during which this
study occurs, MR170 makes larger corrections in relatively
larger scales, as would be expected with a larger number of
low-resolution members and a broader localization distance
applied to these members. It is worth noting that large anal-
ysis increments do not necessarily indicate a better analysis
or subsequent forecast a priori; they instead indicate that
the observations adjusted the analysis further away from the
background forecast. Subsequent sections will examine the im-
pact of these corrections on the global and regional analysis
and forecast errors.

FIG. 6. Difference in the root-mean-square fit (RMSF) of the 6-h forecast of (a) temperature (K), (b) wind speed (m s21), and (c) specific
humidity (kg kg21) to the rawinsonde observations between the MR170 and SR-High experiments as a function of pressure, averaged over
all cycles every 100 hPa over global (magenta), Northern Hemisphere extratropical (light blue), Southern Hemisphere extratropical
(orange), and tropical (dark blue) latitudes. Dots indicate levels where the RMSF difference is statistically significant using a paired
t test and a 95% confidence interval.
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b. Short-term forecast errors and ensemble spread

To determine if the greater analysis increments translate
into a more accurate forecast, the difference between the
RMS fit (RMSF) of the 6-h background forecast to the obser-
vations for all cycles was calculated and averaged over vertical

levels in increments of 100 hPa. The RMSF was broken down
into the same four regions as described above: GB, NH, SH,
and TR. In Fig. 6, the difference in RMSF between the two
experiments as well as the statistical significance, which was
calculated using a paired t test (e.g., Walpole et al. 2011) with

FIG. 7. RMSF of the 6-h forecast to the rawinsonde observations (solid lines) and square root of the sum of the 6-h background ensem-
ble variance and the observation error variance (dotted lines) for the (left) temperature (K), (center) wind speed (m s21), and (right) specific
humidity (kg kg21) for the MR170 (red) and SR-High (blue) experiments as a function of pressure averaged over all cycles every 100 hPa
over (a)–(c) global, (d)–(f) Northern Hemisphere extratropical, (g)–(i) Southern Hemisphere extratropical, and (j)–(l) tropical latitudes.
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a 95% confidence interval, were plotted. For both the temper-
ature and wind speed, MR170 has a closer fit to the observa-
tions when compared with SR-High for all vertical levels
(Figs. 6a,b). The improvement is most apparent in the upper
levels of the TR region for both the temperature and wind
speed. Although there is a marginal improvement for specific
humidity fit to observations globally, the improvement is not
statistically significant (Fig. 6c), suggesting the larger localiza-
tion length scales and greater sampling at larger scales in
MR170 does not provide substantial benefit to specific humid-
ity as for temperature and wind speed.

Additionally, the spread of the ensemble, ideally, should be
representative of the ensemble forecast errors. However, en-
semble-based DA systems often suffer from underdispersive-
ness of the background ensemble due to the deficiency of the
DA system and the misrepresentation of the model errors
(e.g., Houtekamer and Mitchell 1998; Whitaker and Hamill
2002). In general, the total RMSF of the 6-h forecast to obser-
vations in Fig. 7 shows that the temperature errors are largest
at the surface and upper levels for all regions, while wind speed
and specific humidity errors tend to increase with decreasing
pressure. Consistent with Fig. 6, the MR170 experiment slightly
outperforms the SR-High experiment for all regions and levels.
When comparing the RMSF to the total spread (i.e., the square
root of the sum of the 6-h background ensemble variance and
the observation error variance), the ensemble is shown to be
underdispersive for all variables. However, this difference be-
tween the RMSF and spread is smaller for the MR170 experi-
ment than for the SR-High experiment.

Figure 8 further demonstrates how the ensemble spread is
increased in the MR170 experiment for most vertical levels
for temperature and wind speed and lower levels for specific
humidity. This increase is most apparent in the SH, especially
in levels that are typically associated with substantial temporal
and spatial variance for each variable (i.e., near the surface
for temperature and specific humidity and near jet-level for
wind speed). This increase may be counterintuitive since en-
semble-based DA methods using higher resolutions, as is
used by all ensemble members in the SR-High experiment in

this study, typically lead to increased ensemble spread (e.g.,
Pellerin et al. 2003; Hamrud et al. 2015). However, the increase
in spread for the temperature, wind speed, and low-level spe-
cific humidity for the MR170 experiment, in part, might be due
to the increase in the total number of ensemble members. In-
creased ensemble size typically leads to a decrease in sampling
error, which could lead to a spread more representative of the
error of the system}corresponding to a larger ensemble spread
in an underdispersive ensemble. The difference in spread is also
more prevalent in dynamically or thermodynamically active re-
gions with sharp gradients, or greater uncertainty. For example,
over the experiment period, the regions associated with the
greatest increase in spread at 200 hPa consistently correspond
with the strongest jet regions (not shown). Compared to wind
and temperature, specific humidity tends to have larger spread
using higher resolution ensembles (Fig. 8c) at upper levels,
likely due to its relatively small-scale nature.

c. Forecast errors at longer lead times

To further evaluate SR-High versus MR170, errors of the
deterministic forecasts initialized by the analysis produced by
these two approaches are calculated. The RMSF of the fore-
casts at 18 grid spacing using bilinear interpolation to ERA-
Interim (18 3 18; Berrisford et al. 2011) was calculated at each
forecast lead time. Since the magnitude of forecast errors and
errors in reanalyses can be comparable at early lead times
(Bormann et al. 2019), verification using ERA-Interim will not
be shown prior to a 24-h lead time (e.g., Magnusson and
Källén 2013; Arcomano et al. 2020; Chen 2020; Kay and Wang
2020). The temporally averaged difference in the RMSF to
the reanalysis for temperature and wind speed between the
MR170 and the SR-High experiments for 1–5-day lead times
in 6-h increments and 16 vertical pressure levels is shown
for the GB, NH, SH, and TR regions in Fig. 9 with statistical
significance determined by a paired t test with a 95% confi-
dence interval. Globally, MR170 demonstrates improve-
ment for nearly all vertical levels and lead times for both
temperature and wind speed (Figs. 9a,b). The magnitude of
this improvement generally increases for later lead times with
the greatest improvement predominately near jet level. The

FIG. 8. As in Fig. 6, but for difference of the square root of the 6-h forecast ensemble variance (i.e., the ensemble spread) at locations of the
rawinsonde observations.
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differences in the RMSF to the reanalysis for the NH and SH
regions mainly resemble the global pattern (Figs. 9c–f). The
magnitude of the improvement in the SH, however, is much
larger than in the NH for the same lead time and level. MR170
also has general improvement in the TR region with the exception

of the temperature at the lowest levels (Figs. 9g,h). However, the
largest improvement in the TR region is at the early lead times
rather than later lead times as in other regions.

To determine the multiscale impact of the DA methodolo-
gies on the forecast errors, the temperature and wind errors for

FIG. 9. Difference in RMSF of the MR170 and SR-High forecasts to the ERA-Interim (left) temperatures (K) and
(right) wind speeds (m s21) averaged over all cycles for (a),(b) global; (c),(d) Northern Hemisphere extratropical;
(e),(f) Southern Hemisphere extratropical; and (g),(h) tropical latitudes for 1–5 days’ lead time. Red and blue shading
indicate a larger RMSF to the reanalysis for MR170 and SR-High, respectively. Purple dots indicate levels where the
RMSF difference is statistically significant using a paired t test and a 95% confidence interval.
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each vertical level and lead time shown in Fig. 9 were decom-
posed using spherical harmonics. The total energy norm (e.g.,
Wang and Bishop 2003) was then calculated with the formula:

1
2
u′2 1

1
2
y ′2 1

cp
Tr

T′2; (3)

where u′, y ′, and T′ are the zonal wind, meridional wind, and
temperature errors, respectively, relative to ERA-Interim,
and cp and Tr are the specific heat at constant pressure at
1.0057 J kg21 K21 and the reference temperature at 270 K,
respectively (Ehrendorfer et al. 1999).

FIG. 10. Difference in total power error (m2 s23) between the MR170 and SR-High experi-
ments verified against ERA-Interim, averaged over all DA cycles and pressure levels selected in
Fig. 9 and given in terms of wavenumber (left y axis) and corresponding wavelength (right y axis)
for 1–5 days’ lead time. Red and blue shading indicate larger total power errors for MR170 and
SR-High, respectively. Purple dots indicate levels where the difference is statistically significant
using a paired t test and a 95% confidence interval.

FIG. 11. Difference in total energy error (m2 s22) at 250 hPa filtered to includewavenumbers 5–25
for the 0000 UTC 12 Sep 2017 cycle between the MR170 and SR-High experiments verified against
ERA-Interim and averaged over all longitudes at a given latitude and 1–5 days’ lead time.

MONTHLY WEATHER REV I EW VOLUME 1511156

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:06 PM UTC



The difference between the spectrally decomposed errors
for the two experiments averaged over the duration of the ex-
periment is shown in Fig. 10. At 24 h, the MR170 experiment
shows improvement in errors at nearly all wavenumbers with
a maximum between wavenumbers 5 and 25 (wavelengths of
;8000–1600 km). This peak disperses into larger and smaller
wavenumbers, and a second maximum occurs at similar wave-
numbers starting right before 72 h. From 72 to 120 h, these
differences in errors continue to grow as well as disperse into
surrounding wavenumbers.

To diagnose the physical features that led to the differ-
ences in the forecast errors between the two experiments,
one case, which was representative of the errors shown in
Figs. 9 and 10, was chosen. The case had an analysis time of
0000 UTC 12 September 2017, and the 250-hPa level was
chosen to be analyzed since pressure levels between 200
and 300 hPa typically demonstrated the greatest improve-
ment in Fig. 9. To determine specifically what was occur-
ring at the peaks in the forecast errors in Fig. 10, the total
energy error was calculated at each grid point for each
experiment and lead time. Then, a filter was applied to ex-
tract the wavenumbers between 5 and 25 since these wave-
numbers displayed the greatest improvement in Fig. 10. In
Fig. 11, these results were averaged over all longitudes, and the
difference between MR170 and SR-High was taken. Figure 12
displays the locations of the 5% greatest improvement
for the MR170 experiment, filtered for the same wavenum-
bers as well as the associated 250-hPa wind speeds in 24-h
increments.

At 24 h, there is peak in the tropics, especially near and
south of the equator, of the difference in energy errors, indi-
cating improvement for MR170 in this region (Fig. 11). One
of the largest areas of improvement, spanning from just north
of the equator to around 208S and from about 208W to 58E,
encompasses the western portion of the tropical easterly jet
(TEJ; Koteswaram 1958) and extends southward to the north-
ern portion of the subtropical jet (Fig. 12a). Improvement at
24 h is likely due to large-scale improvement at analysis time
within or upstream of these features. Between 24 and 72 h, lo-
cally generated errors in the NH and SH extratropics begin to
become evident (Figs. 11, 12a–c). These errors are largely col-
located with regions of the polar jet in both hemispheres (e.g.,
around 608S, 1208W at 48 h). Additionally, areas where the
polar and subtropical jets interact in the SH tend to exhibit
more substantial growth of the differences in errors, such as
shown at 72 h near 508S, 508W or near 508S, 1058E. After
72 h, the error differences continue to increase in both hemi-
spheres but more so in the SH than the NH. This growth is es-
pecially apparent in polar jet region in the SH, especially in
the areas to southwest of Australia (;408S, 1108E), south of
Africa (;608S, 358E), and southeast of South America
(;508S, 308W; Figs. 12d,e).

The case study highlights the value in accurately analyzing
large-scale features such as the TEJ as well as the importance
of the interaction between the tropics, subtropics, and extra-
tropics in terms of error growth. For this case, the NH jet
stream is relatively weak and isolated from the tropical region
as would be expected in the late summer and early fall.

FIG. 12. ERA-Interim wind speed at 250 hPa for the 0000 UTC
12 Sep 2017 cycle for every 24-h forecast up to 5 days. The 5%
minimum difference in total energy error at 250 hPa relative to
ERA-Interim between the MR170 and SR-High experiments
filtered to include wavenumbers 5–25 is contoured in cyan.
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Therefore, error growth in this region depends mainly on er-
rors that are generated locally. In contrast, the SH subtropical
jet directly interacts with regions with large differences in er-
rors in the tropics, which leads to subsequent error growth
along the subtropical jet. In areas where the subtropical and
polar jet meet, the locally generated errors in the SH extra-
tropics are further compounded by the errors at early lead
times in the tropics and subtropics.

The large-scale improvements in the forecasts for MR170
relative to SR-High can be attributed to two interconnected
factors: 1) the larger number of low-resolution ensemble
members in MR170; 2) the larger localization radius for the
low-resolution ensemble. Both factors can lead to a more ac-
curate estimation of the background error covariances at rela-
tively large scales and therefore more accurate correction for
the background forecast for the large scales.

d. Tropical cyclone track errors

In addition to examining global forecasts, the impact of the
extended MR-ENS methodology on TC track and intensity
forecast errors was also investigated. For each 5-day forecast,
a tracking algorithm, as described in Marchok (2002), was
used to determine the forecasted location and maximum wind

speeds of 15 TC storms that occurred during the experiment
period. These storms include Irma, Jose, Katia, Lee, and
Maria in the Atlantic basin; Lidia, Max, Norma, Otis, and
Pilar in the east Pacific basin; and Sanvu, Mawar, Guchol,
Talim, and Doksuri in the west Pacific basin. TC track errors
were calculated by taking the difference of the forecasted
track or maximum wind speeds and the “best track” data as
determined by the NHC2 for the Atlantic and east Pacific
basins and the JTWC3 for the west Pacific basin. Track and
intensity errors were averaged over all 15 storms for each
experiment and lead time. The statistical significance for dif-
ferences between MR-ENS and SR-High track and intensity
errors was calculated by using a paired t test with a 95% confi-
dence interval.

In Fig. 13a, the percentage difference in temporally aver-
aged track errors for MR-ENS experiments with SR-High
used as the reference is shown. Between 6 and 120 h, the
MR170 experiment has a statistically significant decrease in
TC track errors. The largest improvements occur between
12 and 54 h where the errors decrease by ;20%. The

FIG. 13. (top) Percentage of (a) track and (b) intensity forecast error differences of MR170 (red) and MR204
(purple) relative to SR-High for lead times up to 5 days. Dots indicate statistically significant differences using a
paired t test and a 95% confidence interval. (bottom) Percentage of more accurate MR-ENS (c) track and
(d) intensity forecasts compared with SR-High using the same colors and lead times as in (a) and (b). The
numbers above the x axes indicate the sample size of tracks at the corresponding lead time.

2 https://www.nhc.noaa.gov/data/#hurdat.
3 https://www.metoc.navy.mil/jtwc/jtwc.html?best-tracks.
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percentage of tracks that have smaller errors compared with
SR-High are shown in Fig. 13c, where a 100% decrease would
indicate that the MR-ENS experiment has smaller track er-
rors at a certain lead time for all TC tracks, while 50% would
signify an equal likelihood of MR-ENS or SR-High having
smaller track errors if a track at a given lead time were ran-
domly selected. For MR170, the percentage of track errors
that are decreased compared with SR-High exceeds 50% for
lead times between 12 and 120 h.

In terms of intensity, the experiments have mixed improve-
ment in error magnitude with significant improvement for
MR170 at 0–12 h and for SR-High from 48 to 54 h (Fig. 13b).
These improvements are relatively small at less than 5%
for all lead times. MR170 also improves the intensity fore-
cast less than 50% of the time for all forecast hours except
96 h (Fig. 13d). The mixed performance of MR170 and
SR-High for intensity relative to track is consistent with hurri-
cane intensity having a stronger dependence on smaller-scale
processes.

In the 0–6-h timeframe, however, there are fewer total
tracks that are improved both at and immediately after analysis

time for the MR170 experiment (Fig. 13c). Also, the percentage
difference between track errors are larger at 12–54-h lead times
when compared to 0–6-h lead times (Fig. 13a). As discussed in
section 4a, the SR-High experiment has larger kinetic energy
analysis increment power, especially at medium- to smaller-
scales in the Atlantic (Fig. 4). Though the track forecast of a TC
is mainly dominated by larger-scale flow, smaller-scale features
may still affect the analysis position of the storm and thereby
subsequent short-term forecasts. The larger corrections at small
scales for the SR-High experiment may help explain the relative
degradation of the MR170 track forecasts in the 0–6-h time-
frame as well as why SR-High has more tracks that are im-
proved during this time. At very short lead times, there is
a balance between resolving and correcting smaller-scale
features}as may be accomplished with SR-High}as well as
correcting larger-scale features with greater accuracy}for which
MR170 is better suited. At later lead times, the large-scale cor-
rection associated with MR170 dominates the improvement in
the track forecasts.

To determine the cause of the differences in track errors,
a single track, which showed improvements exceeding 50%

FIG. 14. Forecasted tracks of Tropical Cyclone Lee for MR170 (red solid) and SR-High (blue solid) for lead times
of (a) 0, (b) 12, (c) 24, and (d) 36 h with an initialization time of 1800 UTC 24 Sep 2017, along with the best track of
the storm (black solid). Dots are in 6-h increments for the tracks. Stars indicate the central position of the storm at the
indicated lead times for the MR170 (red), SR-High (blue), and best (black) tracks. Mean sea level pressure is plotted
every 4 hPa for the MR170 (red dashed), SR-High (blue dashed), and ERA-Interim (green dashed at 24 and 36 h).
Wind barbs, indicating the large-scale (wavenumbers 0–10) pressure-weighted 850–300-hPa wind speed (kt;
1 kt ’ 0.51 m s21) and direction, are plotted for MR170 (red), SR-High (blue), and ERA-Interim (green at 24
and 36 h) at each lead time. At 24 and 36 h, shading indicates the difference in the magnitude of the pressure-
weighted 850–300-hPa zonal wind error filtered to include wavenumbers 0–10 between MR170 and SR-High
relative to ERA-Interim, where green and brown indicate larger errors for MR170 and SR-High, respectively.
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in the 0–120-h track forecast for the MR170 experiment, was se-
lected for further examination. This track was associated with
Hurricane Lee with an analysis time of 1800 UTC 24 September
2017 soon after its re-intensification into hurricane strength
(Blake 2018).

The track of a tropical cyclone is largely determined by the
steering flow, which can be estimated by the environmental
wind field averaged vertically over several pressure levels
(e.g., George and Gray 1976; Chan and Gray 1982). For this
case, a pressure-weighted average of the zonal and meridional
winds at each grid point from 850 to 300 hPa (e.g., Wu and
Chen 2016) was calculated. The effects of the storm itself then
were removed by filtering the winds to include only large scales
(approximately wavenumbers 0–10). These large-scale steering
flow winds are plotted with the track positions in Fig. 14. The
difference in the magnitude of the error of the large-scale zonal
winds between the MR170 and SR-High experiments relative
to ERA-Interim are also plotted for lead times beginning at
24 h.

Compared with SR-High, MR170 improves the analysis of
the central position of the storm, which is located at the north-
ern portion of a large-scale anticyclonic region (Fig. 14a).
MR170 produces weaker westerly winds in the analysis in these
regions, leading to the central location of Lee in the MR170
12-h forecast remaining further to the east, closer to the location

of the best track (Fig. 14b). During subsequent lead times, the
large-scale anticyclone propagates northwestward, shifting the
direction of the large-scale winds in the vicinity of the storm cen-
ter from westerly to easterly (Figs. 14b–d). From 24 to 36 h, the
large-scale zonal wind errors associated with the anticyclonic re-
gion are smaller for MR170, likely stemming from an improved
analysis of these large-scale winds. The smaller errors corre-
spond with stronger easterly large-scale winds and larger west-
ward storm motion from 18 to 36 h, more consistent with the
best track. These improvements can be connected to the ability
of MR170 to analyze more accurately the large-scale wind pat-
terns due to the increased number of low-resolution ensemble
members and the larger localization radius associated with the
low-resolution ensemble.

e. Sensitivity testing

To further test the sensitivity of MR-ENS to the variable
sizes of the high- and low-resolution ensemble members, a
second MR-ENS experiment with 180 low-resolution mem-
bers and 24 high-resolution members (MR204) was examined.
As discussed in section 3, MR204 has the same cost as MR170
and SR-High.

The MR204 500-hPa analysis increments decomposed into
spectral space show a similar pattern to that of MR170 for
all variables (Fig. 3). Both MR170 and MR204 show a

FIG. 15. As in Fig. 6, but (a)–(c) between the MR204 and SR-High experiments and (d)–(f) between the MR170 and MR204 experiments.
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substantial increase in the analysis increments over SR-
High at larger spatial scales for temperature and zonal
wind and similar analysis increments as SR-High for spe-
cific humidity. All variables have similar or slightly smaller
analysis increments at smaller scales.

Like MR170, MR204 produced an improved RMSF of the
6-h global forecast to the rawinsonde observations, compared
with SR-High for the temperature, wind speed, and specific
humidity at all vertical levels (Figs. 15a–c). MR204, however,

slightly degrades the accuracy of the 6-h forecast when com-
pared with MR170 for most vertical levels (Figs. 15d–f). Simi-
larly, at longer lead times, MR204 improves the RMSF to the
reanalysis compared to SR-High (Fig. 16). However, MR170
generally exhibits significant improvement in the global
forecast over MR204 at most vertical levels and lead times
(Fig. 17). For TC track forecasts, MR204 produces smaller
track errors compared with SR-High up to 120 h with statis-
tically significant differences up to 36 h (Fig. 13a). Also,

FIG. 16. As in Fig. 9, but for the MR204 and SR-High experiments.
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between 24 and 108 h MR204 improves the track forecast
more than 50% of the time when compared with SR-High
(Fig. 13c). For nearly all lead times, however, there is a deg-
radation in the track forecast for MR204 when compared to
MR170. Compared with SR-High, TC intensity errors fol-
low a similar pattern for MR170 and MR204. MR170 shows
similar values or improvement over MR204 at most lead
times (Figs. 13b,d).

Overall, both MR-ENS experiments improve upon SR-
High. However, MR204 shows degradation when compared
with MR170. Compared to MR170, MR204 has increased low-
resolution ensemble members and decreased high-resolution
members. The degraded performance of MR204 is likely
due to the loss of information at smaller spatial scales out-
weighing the additional gain of resolving large-scale errors.
The need to include certain numbers of high-resolution

FIG. 17. As in Fig. 9, but for the MR170 and MR204 experiments.
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ensemble members in the background error sampling is a re-
sult consistent with Lei and Whitaker (2017). These sensitivity
experiment results demonstrate that optimal performance
of MR-ENS requires a balanced selection of high- and low-
resolution members.

5. Conclusions

This study further develops the multiresolution ensemble
(MR-ENS) hybrid 4DEnVar. The extended MR-ENS method
allows for a varying number of low- and high-resolution en-
semble members as well as different localization length scales
for the low- and high-resolution ensembles.

The extended MR-ENS technique was evaluated with 6-h
cycling for a 5-week period. Two MR-ENS experiments were
examined. The first, MR170, had 130 low-resolution members
and 40 high-resolution members; and the second, MR204, had
180 low-resolution members and 24 high-resolution members.
The deterministic analysis and forecast for these experiments
were compared to those from a single high-resolution ensem-
ble hybrid 4DEnVar experiment, SR-High, at the same com-
putational cost.

Globally, larger analysis increment power was present for
MR-ENS experiments at large scales, especially for temperature
and zonal wind. At the smallest scales, MR-ENS experiments
exhibited slightly smaller increment power. In medium scales,
MR-ENS produced larger analysis increments in most regions,
most notably the SH, where large-scale forcing had the largest
impact on the region during the experiment period. There was
an exception to this notion in the tropical and NH Atlantic,
which were dominated by high-intensity convective activity
during this period with contributions from five hurricanes
(including four major hurricanes) and a substantial number
of tropical easterly waves.

The MR-ENS experiments generally led to an improve-
ment in the deterministic forecast for up to five days in lead
time when compared to SR-High, despite the experiments
having the same computational cost. This improvement was
most apparent in large scales and upper levels in the tropics at
early lead times (prior to 48 h) and the SH at later lead times.
A case study highlighted that the greatest improvement oc-
curred after the interaction of large-scale features, such as the
interaction of the TEJ with the subtropical jet or the interac-
tion of the subtropical and polar jets. Therefore, it is benefi-
cial to create an analysis that can both correct the large-scale
features themselves and allow for more multiscale interaction
between these features.

As with global forecasts, tropical cyclone track forecasts
were generally improved for the MR-ENS experiments,
with improvements exceeding 10% on average for most
lead times. The improvements were mainly attributed to
the ability of the extended MR-ENS technique to further
correct the large-scale environmental flow due to greater
sampling at large scales and broader localization radius
for the low-resolution ensemble. At very early lead times
(0–6 h), there was less notable improvement in track fore-
casts when compared with later lead times, and a greater
number of total tracks were improved by the SR-High

experiments over MR-ENS. The slight degradation in
MR-ENS from 0 to 6 h compared to other lead times corre-
sponds with the larger analysis increments for SR-High in
TC basins during the experiment period. Additionally, for
nearly all lead times, there were fewer intensity forecasts
improved by MR-ENS than SR-High, different from the
track forecasts. Therefore, there are still applications for
which having greater information at high-resolution via
more high-resolution ensemble members is preferable to
having greater sampling at low resolution.

The two MR-ENS experiments were intercompared. The
MR-ENS configuration with a smaller (larger) number of
low- (high-) resolution ensemble members, MR170, outper-
formed its counterpart, MR204, in most metrics. This result
shows that it is not enough to rely solely on the corrections at
large scales. There is still evident forecast value in retaining
more accurate information about the state and error correlations
at small scales by having a sufficient sample of high-resolution en-
semble members. The optimum balance between correcting
large and small scales at a given computational cost can be
found by adjusting the size of the low- and high-resolution
ensembles using a MR-ENS framework. The exact values
associated with that optimal balance are beyond the scope
of this study. However, the optimal number of high- and low-
resolution members seems to be feature-dependent. There-
fore, it would be useful to further test the extended MR-ENS
capabilities at additional times and under different conditions
outside of the 5-week period used in these experiments (e.g.,
during a NH winter). This study is the first to compare
SR-High and MR-ENS at the same costs. Tuning of additional
MR-ENS parameters may be needed to optimize its perfor-
mance. For example, tuning the hybrid weights for the low-
and high-resolution ensembles or formulating the weights to
be scale-dependent may be beneficial to more accurately cor-
rect different scales. This study, also, only tested two different
horizontal resolutions in a deterministic context. Further ex-
tension of MR-ENS to include three or more resolutions and
to include variable vertical resolution could allow an even
greater flexibility of sampling of various scales.

This study focuses only on MR-ENS. Combining MR-ENS
with additional multiscale DA techniques, such as SDL or
other methods (e.g., Buehner and Shlyaeva 2015; Wang et al.
2021), requests additional algorithm development. The rela-
tive difference between MR-ENS and SR-High when SDL is
implemented and integrated should be examined in future
work. Last, cautions need to be taken to extrapolate the re-
sults to the operational system given the overall coarser reso-
lutions used in this study.
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